Sign up for our newsletter - Navigating the horizon of business technology​
Technology / AI and automation


In CI Nos 1,070, 1,072 and 1,075, Peter White looked at what IBM can technically achieve – given its cautious des ign rules – in its next two generations of top-end CPUs, and today it all comes together.

It is the physical data skew caused by the channel protocol, described in CI No 1,075, that has led to widespread speculation that the 20Mb a second channel that IBM is expected to launch, will in fact use a new serial protocol. We know the fast channel is coming because it was pre-announced at La Hulpe earlier this year. The speed however is dependent upon how quickly a component, in this case a laser, can switch. By going to a serial protocol, IBM has put a strain on this technology, and it will have to signal a lot faster than its old parallel protocol just to deliver the same overall speed. But the belief is there that laser technology can already take it to 20 (or as was predicted at La Hulpe, 18Mb) per second now, and eventually on up to 200Mb a second. This isn’t the theoretical limit of this technology, but its as fast as the internals of an IBM machine could receive it, so until there is a new architecture in the middle, that is as fast as IBM could want. Marketspeak Shrewd observers will note that a new channel architecture like this is a perfect opportunity to introduce a new CPU architecture. You can have all these wonderful storage goodies, as long as you buy a Summit processor has that strange compelling IBM marketspeak about it. But the attractions of what will appear as a superfast channel can’t be sold for Summit only, people will want them now, not when their machine goes off lease, or when they’ve saved enough for a new one. And IBM traditionally allows storage technologies to overlap architectures, and a more reasonable strategy would be to implement the fast channels first on the 3090S models, and to have even faster ones appear later, exclusively for implemenation on Summit.

But to retrofit a new input-output protocol into a machine like the S would be expensive and upsetting to customers. What about all that storage attached already which cannot be converted to serial input-output? It is therefore reasonable to assume, as is rumoured, that IBM has already fitted components into the S that will do high speed translation between the two input-output protocols, and it would be a typical component area for the GaAs parts that it is known to be fabricating, because IBM will need an extremely fast chip to do the job, probably faster than any currently commercially available chip. In effect the CPU would eventually be able to treat the outside world as it if was Expanded Storage, but in the meantime ES acts as a huge fetch buffer between a soon-to-be 18 megabyte a second physical world, and the main CPU memory. Questions immediately arise such as how fast the disks need to go if there is sufficient prediction of all the data needed. And the answer is likely to be that the faster the disks rotate, the easier the problem will be for IBM to overcome. To facilitate a storage architecture of this type, IBM will want faster access times, and this may even mean smaller disks, smaller platters, and better still, multiple disk heads on smaller platters – which is just what disk guru Jim Porter is forecasting. IBM says that some head-of-string drives can be eliminated under ESA (although the claim that this can more than pay for your new expensive and massive internal memory have to be taken with more than a pinch of salt). What will control all this data at the end of a 18/20/200Mb a second channel? IBM has already entrusted the care of all the world’s data to DFSMS, the series of storage management products that was announced with ESA.

The answer is a processor that runs not DB2 (although a version of that could be there as well) but the SMS Storage Management System. At the moment little would be gained from putting an SMS processor at the other end of a 20 Megabytes a second line, but little may well be enough, along with a new serial protocol for input-output, to give top-end users some relief from storag

White papers from our partners

e bottlenecks, and more benefit from ESA. However the real benefits of using a separate SMS machine will come when it can feed the central processor at 200Mb per second, and that day doesn’t have to be too far away. IBM’s estimates of when laser technology will enable this, fall around 1993. The architecture that we are getting a glimpse of in technology briefings from IBM is way off into the future. It is a 4nS or faster processor under a single TCM, in clusters or complexes of any number up to around 16; massive 8Gb or even 16Gb Expanded Storage, with a new design approach to real memory eventually taking it beyond its current limitation of 512Mb to around 2Gb. This future machine will be fed by either one single, or eventually the possibility of several storage machines, each feeding the central complex at 200Mb a second, from heavily cached disk controllers, and faster and faster disks. But that’s Son of Summit. Summit has to be an 8nS to 9nS CPU built using a handful of TCMs, delivered in complexes of up to 12 CPUs. It is a machine built around a new TCM which will be far more thermally efficient than even the original TCM designs, which back in 1981 were considered over-engineered. The fresh design of TCM will deliver benefits in storage handling as well as within the CPU, enabling greater use of ES, and more efficient co-operation with the DFP Data Facility Product and SMS Storage Management Subsystem. New disks will attach only to 3090 S models and above, and will operate more efficiently with SMS-based systems using a new disk architecture that speeds delivery to the hungry mass of ES in the middle of this contraption. Summit will be the first machine to offer more than 512Mb of a new type of memory chip, which isn’t just a 4 megabit chip, but a more reliable chip technology than that which went into the 3090. IBM will use this memory to differentiate between the new machines and the Ss. Mid-to-late 1990. But the way it will unfold will be to give customers half the benefit in the storage subsystems, convincing many that the S – and likely a G next year – are indeed Summit; with the rest of the benefit delivered in the first generation of new machines, scheduled for delivery in mid-to-late 1990. By then IBM will want its faster fibre-optic channel out and working, SMS widely installed, ESA automatic, and a lot of ES memory shipped. New ESA versions of all IBM’s strategic software offerings, each pushing through the hardware 20% plus faster, will help this move to Expanded Storage-dependent ESA environments; the top end 3990 technology will be established, and its new disk drives shipping in droves; otherwise the benefits of Summit are going to be as obscured by performance issues as have been those of the S series.

This article is from the CBROnline archive: some formatting and images may not be present.

CBR Staff Writer

CBR Online legacy content.